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Static Magnetic Field Exposure Reproduces Cellular
Effects of the Parkinson’s Disease Drug Candidate
ZM241385

Zhiyun Wang, Pao-Lin Che, Jian Du, Barbara Ha, Kevin J. Yarema*

Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America

Abstract

Background: This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for
certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical
properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our
laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF)
exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the
current paper investigated SMF by focusing on the adenosine A, receptor (AaR) in the PC12 rat adrenal
pheochromocytoma cell line that displays metabolic features of Parkinson’s disease (PD).

Methodology and Principal Findings: SMF reproduced several responses elicited by ZM241385, a selective AaR
antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide
production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also
counteracted several PD-relevant endpoints exacerbated by A,sR agonist CGS21680 in a manner similar to ZM241385;
these include reduction of increased expression of AR, reversal of altered calcium efflux, dampening of increased
adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of
neurite outgrowth.

Conclusions and Significance: When measured against multiple endpoints, SMF elicited qualitatively similar responses as
ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise
as an intriguing non-invasive approach to treat PD and potentially other neurological disorders.
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Consequently, alternative therapies including electromagnetic
(EM) field exposure have been explored for PD. These efforts
date back at least two decades when reports that high-frequency
deep brain stimulation (DBS) could ablate certain aspects of
neurological movement disorders were published [4]. Building on
DBS, EM treatment modalities that fully penetrate the brain non-
invasively have been pursued. For example, time invariant (i.e.,
static) magnetic fields of 1160 to 2600 gauss (0.116 to 0.260 T,

Introduction

Parkinson’s disease (PD) is an age-related disorder arising from
the degeneration of dopaminergic nigrostriatal neurons of the
basal ganglia resulting in dykinesia, tremor and rigidity. Current
therapy — exemplified by the dopaminergic agent L-3,4-dihy-
droxy-phenylalanine (L-DOPA) — is restricted to symptomatic
relief because agents capable of reversing or even effectively

inhibiting neuronal degeneration have not yet been found.
Compounding these limitations, L-DOPA therapy tends to lose
effectiveness over time, L-DOPA-induced dyskinesias are a
common complication of chronic dopaminergic therapy, and
metabolites of this compound are neurotoxic [1]. The search for
alternate, non-dopaminergic therapies to overcome these draw-
backs has positioned adenosine Ayy receptor (AgaR) antagonists as
an attractive option for improved treatment of PD [2,3].

Despite the favorable features of Ags R antagonists, their
pharmacological properties (e.g., poor oral availability and a lack
of BBB permeability) constitute a barrier to clinical use.

@ PLoS ONE | www.plosone.org

similar to the field strength used in the current study) were shown
to mimic the effect of caffeine, a nonspecific adenosine receptor
antagonist that has inhibitory effects on neurons [5] and Sandyk
and coworkers reported that magnetic fields ameliorated PD
symptoms [6]. Interest in exploiting EM treatments for brain
disorders continues today, exemplified by recent reports that EM
radiation can reverse plaque formation in a murine model of
Alzheimer’s disease [7].

In light of two decades of investigation, the current study revisits
the use of EMYF exposure for PD by using moderate strength static
magnetic fields (SMF) in the tenths of Tesla (thousands of Gauss)
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range where effects on biological molecules and physiological
endpoints of potential therapeutic relevance have been unambig-
uously established. In particular, the current report builds on a
genomics analysis of human embryoid body derived (hEBD) cells
exposed to 0.23-0.28 T static magnetic fields that engaged
signaling pathways related to neural function, broadly establishing
relevance to PD [8]. More specifically, two facets of the study by
Wang and coauthors [8] suggested relevance of SMF to PD. First,
SMF exposure over short time periods increased IL-6 levels but
suppressed IL-6 production over several days; similar responses —
if they occur i vivo — could promote beneficial A|R activity over
the short term [9,10] and ameliorate the high levels of IL-6 found
in the brains of Parkinson’s patients over the longer term [11].
Second, software analysis of metabolic pathways showed that SMF
immpinged upon amino acid metabolism, suggesting that this
stimulus could modulate aberrant amino acid metabolism
associated with brain dysfunction.

In the current study, we investigated whether SMF could
modulate PD-relevant endpoints in the PC12 rat adrenal
pheochromocytoma cell line [12]. PC12 cells are widely used as
an m wtro model to study PD [13,14] because they possess
intracellular substrates for dopamine (DA) synthesis, metabolism
and transport and abundantly express adenosine Ay receptors
(e.g., AgaR) implicated in PD [15-20]. Using this model, we
compared the effects of SMI with the AgaR-specific antagonist
ZM241385 on PD-relevant parameters and found that SMF
elicited similar responses against several endpoints. These results
raise the intriguing possibility that this non-invasive stimulus could
function as a substitute for small molecule AysAR antagonists under
development as PD drugs.
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Results

Exposure to SMF alters calcium flux in PC12 cells

Altered calcium flux is a well established cellular hallmark of
exposure to SMF [21]; the first objective of the current study was to
verify that this endpoint — previously observed in lymphocytes,
HepG2, U937, HeLa, COS7, and hEBD lines [8,21] — was affected
by magnetic exposure in PC12 cells. As shown in Figure 1A, efflux of
Ca?" from SMF-treated cells, measured by the level of Ca®* in the
supernatant, diverged from untreated cells over a three hour period
and, as described in our previous publication [8], reciprocal changes
to intracellular Ca®* levels occurred under these assay conditions
(data not shown). A second objective was to verify that CGS21680, a
selective adenosine Aygn receptor (AgaR) agonist that reproduces
cellular responses that contribute to PD, inhibits calcium currents and
related biological endpoints in PC12 cells in our assays as reported in
other studies [15,22-24]. As shown in Figure 1B, CGS21680
substantially inhibited Ca** efflux in PC12 cells, decreasing
extracellular Ca?* levels by ~50% compared to untreated controls.
Co-incubation of the CGS21680-treated cells with ZM241385, a
potent, non-xanthine A9zR antagonist [25] under evaluation as a
drug candidate for PD [2,26] partially, but substantially, offset this
inhibition. Importantly, foreshadowing subsequent endpoints inves-
tigated in this study, the ability of ZM241385 to counteract the effects
of CGS21680 was reproduced by SMF.

SMF exposure changes A,nR mRNA and protein levels
To investigate whether changes to Ca®" flux observed at early

time points in SMF-treated cells (Figure 1) impacted endpoints

relevant to PD in PC12 cells over longer time periods, we
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Figure 1. Calcium levels in PC12 cells exposed to SMF, the AR agonist CGS21680 or antagonist ZM241385. (A) Extracellular Ca®* was
measured for cells maintained in calcium-free medium increased for time points up to 3.0 h in response to SMF exposure; p<<0.05 for n=3
independent experiments. (B) In a separate experiment cells were evaluated at the three hour time point when the largest difference between SMF-
treated and untreated cells occurred but before cell integrity was compromised from the assay conditions (e.g., from using Ca?* and Mg** free D-
PBS). Cells treated with 1.0 pM CGS21680 experienced decreased Ca®* release compared to control cells while co-treatment of the cells with this
agonist and either 1.0 uM ZM241385 or SMF attenuated the CGS21680-induced decrease (p values for each comparison are shown on the chart for

n =3 independent experiments).
doi:10.1371/journal.pone.0013883.g001
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measured ApaR mRNA and protein levels. In this experiment, the
AgaR agonist CGS21680 dramatically up-regulated AgaR mRNA;
this response was reversed by concurrent exposure to ZM241385
(Figure 2A). Consistent with the results shown in Figure 1 where
ZM241385 was shown to reverse the impact of CGS21680 on
calcium efflux, SMF was able to suppress the increased AgaR
mRNA levels engendered by CGS21680. To confirm that the
changes in mRINA expression extended to protein levels of AgzR,
we used western blotting to compare AgsR in control and test cells
and found that the highly increased amounts of AgaR mRNA in
CGS21680-treated cells led to a similar (albeit quantitatively
smaller) increase in AgaAR protein levels. These increases in AgaR
were reduced to roughly control levels by co-treatment with
7ZM241385 and SMF (Figure 2B & C).

SMF mediated changes are consistent with L-type
Ca”*channel modulators

To gain a better perspective whether long-lived changes (e.g.,
changes to gene expression, and endpoint previously observed for
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Figure 2. Effect of Ca®* flux and adenosine activators and
blockers on A;4R mRNA and protein levels in PC12 cells. (A) The
AoaR agonist CGS21680 increased A;nR mRNA levels by over 5-fold
while the antagonist ZM241385 as well as SMF decreased this agonist-
enhanced A,4R transcription to close to control levels (p values for each
comparison are shown on the chart for n=3 independent experiments).
(B) The A,aR agonist CGS21680 increased A,4R protein levels while the
antagonist ZM241385 as well as SMF decreased AR in western blots;
quantification of representative data is shown in (C); this experiment
was repeated three times with similar results.
doi:10.1371/journal.pone.0013883.g002
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SMF in our studies [8]) could have been initiated through the
proposed modulation of calcium channel activity by SMF, an
independent method to alter Ca®* flux was evaluated. Specifically,
Bay K8644 (an L-type Ca®" channel activator) and nifedipine, (an
L-type Ca®" channel blocker) were used to alter Ca?* flux in PC112
cells and AgaR mRNA levels were again evaluated. In this
experiment, Bay K8644 increased AonR mRNA levels while
nifedipine treatment decreased transcription (Figure 3A); in
essence Bay K8644 reproduced the effects of agonist CGS21680
and nifedipine mimicked antagonist ZM241385 (as shown in
Figure 2A). To further strengthen the correlation between L-type
Ca®" channels, calcium flux, and AguR transcription, we
demonstrated that the increased levels of AjgAR mRNA found in
Bay 8644 treated cells could be reduced to levels found in control
cells by concomitant exposure to SMF (Figure 3B).

Opverall, although detailed characterization of the intracellular
flux of calcium in SMF-treated cells is beyond the scope of the
current work (for example, real-time imaging methods that
capture dynamic changes to organelle-specific calcium levels are
not compatible with our SMF-treatment device) the experiments
described in Figures 1 to 3 are consistent with a mechanism
whereby SMF alters the biophysical properties of cellular
membranes and embedded ion channels (see Discussion), thereby
affecting Ca®" flux in ways that mimic the A,sR antagonist
ZM241385. Based on this foundation, and the knowledge that

calcium functions as a second messenger in numerous signaling
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Figure 3. Effect of L-type Ca®*" channel activators and blockers
on A,,R mRNA and protein levels in PC12 cells. (A) The L-type
Ca?* channel activator Bay K8644 increased A,aR mRNA levels in PC12
cells compared to untreated controls while the L-type Ca®* blocker
Nifedipine, as well as SMF exposure, decreased A;4R mRNA levels after
6.0 h of exposure (p<<0.05 for each test condition compared to control
for n=3 independent experiments). (B) Increased A;4R mRNA resulting
from exposure to Bay 8644 was reversed by concomitant exposure to
SMF (p values are shown for n=3 independent experiments).
doi:10.1371/journal.pone.0013883.g003
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pathways and — in neural cells — contributes to the excitatory state
[27], the remainder of this report describes several endpoints of
relevance to PD that respond to SMF in a manner similar to
ZM241385 in PC12 cells.

SMF exposure modulates ATP and ADO levels

Upon establishing that CGS21680, ZM241385, and SMF
modulate Ca®" ion channel flux and AgzR transcription in PC12
cells (Figures 1-3) we investigated whether the effects of these
stimuli extended to modulation of adenosine (ADO) metabolism.
Specifically, because calcium is linked to adenosine (ADO) levels
that, together with cAMP, modulate AgaR activity in PC12 cells to
reproduce cellular aberrations found in PD [17-20] we first
measured cellular levels of adenosine triphosphate (ATP), which
provide energy to activate the plasma membrane Ca”>* ATPase
(PMCA) and also is an upstream source of ADO. ATP levels were
moderately (but statistically significantly) lower in PC12 cells
incubated with CGS21680 compared to untreated controls
(Figure 4A), consistent with a shift to an ADO producer phenotype
that occurs during hypoxia in this cell model of PD [28]. By
contrast, ATP levels were higher in ZM241385 and SMF treated
cells than in the untreated controls.
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Effects of SMF on PC12 Cells

Known metabolic connections between ATP and the down-
stream metabolite ADO suggested that changes to ATP levels
shown in Figure 4A would be reflected in changes to ADO, an
important modulator of PD-related endpoints via adenosine
receptors. Using an HPLC assay, we were unable to detect
ADO release from untreated control cells (Figure 4B; an authentic
ADO sample is shown in Figure 4C). By contrast, ADO release
increased to readily detectable levels for CGS21680-treated cells
(Figure 4D). The release of ADO from AgsR agonist-treated cells
was attenuated by ~50% by concurrent treatment with the small
molecule antagonist ZM241385 (Figure 4E) as well as by SMF
(Figure 4F).

SMF exposure increases intracellular cAMP levels

Levels of cAMP are another parameter relevant to PD that can
be interrogated in PC12 cells; this ubiquitous second messenger is
linked to Ca®" through a complex sequence of events mediated by
AgaR [29] and G, proteins [30]. To evaluate connections
between cAMP and AgaR in our experiments, we analyzed cAMP
levels in agonist (CGS21680) and antagonist (ZM241385) treated
cells and found a modest increase in the former and a more
substantial decrease in the latter (Figure 5). In these experiments
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Figure 4. Cellular ATP and ADO levels in PC12 cells exposed to SMF, CGS21680 or ZM241385. (A) Cells were incubated with 1.0 uM
CGS21680, ZM241385, or exposed to SMF for 6.0 h. The cells were harvested and an equal number from each sample were used to prepare extracts
and to measure intracellular ATP levels (p<<0.05 for n=3 independent experiments for each treatment condition compared to untreated control cells;
a similar trend was observed for 3.0 h, but not all data points were statistically significant). (B) — (F) After 3.0 h incubation in D-PBS, the extracellular
fluid was collected from PC12 cells and analyzed by HPLC to detect and quantify ADO. (B) ADO was not detected in samples from untreated control
cells (elution of authentic ADO is shown in (C)) but was observed in samples from cells treated with (D) 1.0 uM CGS21680, (E) 1.0 uM CGS21680 plus
1.0 UM ZM241385, or (F) 1.0 uM CGS21680 plus exposure to SMF in (F). The HPLC assays were repeated three times with similar results;

representative data is shown.
doi:10.1371/journal.pone.0013883.9004
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Figure 5. cAMP levels in SMF, CGS21680, and ZM241385
treated PC12 cells. Cells were exposed to each condition, harvested,
lysed, and assayed for cAMP levels. Each test condition treatment
condition varied from untreated control cells with p<<0.05 for n=3
independent experiments.

doi:10.1371/journal.pone.0013883.9g005

SMF decreased cAMP levels, again showing that magnetic
exposure can functionally reproduce the cellular effects of an
AyaR antagonist.

SMF, like A 4R antagonists, inhibits nitric oxide
production in PC12 cells

Nitric oxide (NO) is a molecular mediator of many physiological
processes, including mechanisms that contribute to neurological
disorders such as Alzheimer’s disease and PD [31]. Therefore,
because of reported connections between Ca**, cAMP, and NO
([29]), we measured nitrite concentrations (nitrate is formed by the
spontaneous oxidation of NO under physiological conditions) in
PC12 cells. Nitrite levels increased in cells incubated with agonist
(CGS21680) after 24 h of exposure while they decreased in
antagonist (ZM2412385) treated cells (Figure 6). Consistent with
results reported above for other PD-related endpoints, SMF
reduced nitrite levels, once again demonstrating that magnetic
exposure can mimic responses elicited by an AgsR antagonist.

6.0
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- p<0.01 p<0.05
4.0 + = T
=] E L
E 3.0 |
< 20!
1.0 {
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Control CGS21680  ZM241385 SMF

Figure 6. Effect of CGS21680, ZM241385, and SMF on nitrite
levels in PC12 cells. Levels of nitrite were measured after 24 h of
incubation with 1.0 uM of the A,aR agonist (CGS21680) or antagonist
(ZM241385) or after exposure to SMF; p values are shown in comparison
with untreated control cells for n=3 independent experiments.
doi:10.1371/journal.pone.0013883.9g006
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SMF impinges upon MAPK pathways and impacts PC12
cell proliferation

Stimulation of PC12 cells with CGS21680 increases the
phosphorylation of p44/42 MAPK (Erkl/2) via cAMP-mediated
signaling [19,32]. This prior observation, together with known
links between NO production and phosphorylation of p44/42
MAPK [29], prompted us to test whether SMF and the AgaR
modulators CGS21680 and ZM241385 also affected p44/42
MAPK. Accordingly, we first investigated whether CGS21680
increased the phosphorylation of p44/42 MAPK and observed an
increase by Western blot analysis after 30 min of exposure
(Figure 7A & B) that was consistent with enhanced proliferation
observed in the agonist-treated cells (Figure 7C). By contrast,
pretreatment of the cells with the ZM241385 or co-treatment with
SMF reversed CGS21680-induced p44/42 MAPK phosphoryla-
tion resulting in levels lower than observed in untreated control
cells (Figure 7A & B); the accelerated proliferation observed in
CGS21680 treated cells also was not seen under these condition
(Figure 7C). In these experiments, SMF by itself also reduced levels
of phospho-p44/42 MAPK and proliferation.

SMF inhibits neurite outgrowth in PC12 cells

The reduced proliferation of PC12 cells exposed to SMF could
result from several underlying causes including the onset of
apoptosis. Magnetic fields, however, have been reported to be
anti-apoptotic [33] and the SMF conditions used in this report
have previously been shown to not have a negative impact on cell
viability [8]. Another possibility, supported by our previous work
where human embryonic cells gained expression of pre-oligoden-
drocyte markers upon SMF exposure [8], was that the reduced
proliferation we observed was a consequence of differentiation. To
assess this possibility, changes to cell fate were monitored by
measuring neurite outgrowth, which has been linked directly to
AgaR (e.g., during hypoxia [34]) as well as indirectly (e.g., through
cAMP-mediated crosstalk between the MAPK pathway and Ag R
during exposure to the bacterial nucleoside N6-methyldeoxyade-
nosine [35]). In these experiments it was necessary to treat the
PC12 for three days with CGS21680 to enhance neurite sprouting
[36]; CGS21680 caused PC12 cells to flatten and to sprout
extended long processes indicative of neurite outgrowth to a much
greater extent than untreated controls (Figure 8A & B). ZM241385
counteracted the AysR agonist-induced increase in neurite
outgrowth (Figure 8C) and exposure of the CGS21680-treated
cells to SMF had the same effect (Figure 8D).

SMF inhibits iron uptake in PC12 cells

Iron uptake, which can occur via a Ca®" activated non-
transferrin bound iron (NTBI) mechanism in PC12 cells [37—40],
is associated with several neurodegenerative diseases including PD
and Alzheimer’s [41] (in PD, oxidative stress hypothesis leads to
increased iron concentration in the substantia nigra that induces
progressive dopaminergic neuronal degeneration secondary to a
high production of hydroxyl radicals by Fenton reaction [42]).
Moreover, iron uptake varies between non-differentiated and
NGTF-induced differentiated PC12 cells [41]. These two factors —
changes in Ca®" flux (Figure 1) and indications of differentiation
(i.e., neurite sprouting, Figure 8) — prompted us to investigate iron
uptake in PC12 cells treated with CGS21680, ZM241385, or
SMEF. Exposure of PC12 cells to concentrations (50 uM) of free
divalent iron (FeSOy) that ultimately lead to cell death showed that
CGS21680 significantly enhanced iron intake at early time points
(i.e., when the cells were still viable) whereas ZM241385 or SMF
exposure inhibited agonist-promoted uptake (Figure 9). In essence,
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doi:10.1371/journal.pone.0013883.g007

SMF decreased the bioavailability of Fe** thereby functioning in a
manner similar to neuroprotective iron chelating drugs [41].

Discussion

Numerous drawbacks with L-DOPA based therapy for PD (as
reviewed elsewhere, [1,43]) have led to intense efforts to develop
alternative treatments. One direction has been guided by
epidemiological evidence that heavy coffee drinkers have a lower
incidence of PD [44] with the benefits of coffee presumably
resulting from caffeine’s interactions with adenosine receptors
[45]. Consistent with this hypothesis, early clinical tests showed
that non-specific adenosine receptor-antagonist theophylline
provided significant benefits for PD patients [46]. Subsequent
investigations that established that antagonistic interactions exist
between AssR and dopamine D2 receptors spurred the search for
AgaR-specific antagonists [47] such as KW-6002, a compound
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that showed therapeutic value in MPTP-treated marmosets an
animal model of PD [48]. In the past several years, highly selective
AR antagonists — such as ZW241385 used in the current study —
have been developed.

In this report we combine the emergence of AgsR as a target
for PD drug development with the growing realization that
magnetic exposure legitimately modulates physiological pro-
cesses i vivo in ways that may be therapeutically beneficial
[49-52] (overall, more than 40 randomized controlled trials of
magnetic therapy for more than 30 clinical indications have
been reported [53]) to show that SMF exposure reproduces the
effects of AysR antagonists over a gamut of PD-relevant
endpoints in PC12 cells. More specifically the current experi-
ments demonstrate that SMF can reproduce the effects of AjuR
antagonist ZM241385 in PC12 cells or, in cases where an
appropriate response could not be observed in naive cells (e.g.,
ADO release (Figure 4) or neurite sprouting (Figure 8)), SMF
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Figure 8. Effect of CGS21680, ZM241385, and SMF on neurite
sprouting in PC12 cells. Representative images of PC12 cells that
were (A) untreated or treated with (B) CGS21680 (1.0 uM), (C)
ZM241385 (1.0 uM), or (D) SMF for three days are shown. (E) Neurite
outgrowth was quantified by counting the number of cells exhibiting
neurites that were 1.5 times longer than the diameter of the cell and
the proportion of cells with neurites was expressed as a percentage of
the total number of cells; data is shown from counting at least 100 cells
from each of five fields selected at random.
doi:10.1371/journal.pone.0013883.g008

can counteract responses induced or exacerbated by the AjsR
agonist CGS21680.

The biological effects of ZM241385 result from direct binding
to AgaR [54-56]. By contrast, SMF — not being a conventional
small molecule pharmacological agent — must elicit cellular
responses through a fundamentally different mode of action. A
plausible mechanism, consistent with the data shown in Figures 1—
3 and outlined in cartoon form in Figure 10, is that SMF alters the
biophysical properties of lipid bilayers [57-60], which in turn
modulates ion channel activity [61] and Ca®" levels [8,21]. Over
time periods of many hours to several days, SMF-initiated changes
to Ca®" can modulate signaling pathways, leading to significant
changes in gene expression, cell behavior, and phenotype [8]. As a
caveat, intracellular flux of calcium has not been thoroughly
characterized in our experiments; for example, nuances of calcium
release from storage organelles (e.g., the sarcoplasmic reticulum,
which is affected by AgaR [62]) in SMF-treated cells remain
largely undefined. In addition, calcium-initiated responses evoked
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Figure 9. Effect of CGS21680, ZM241385, and SMF on iron
uptake in PC12 cells. Intracellular iron was quantified using a
colorimetric assay one hour after the addition of 50 uM FeSO, to the
medium (p values are shown comparing each test condition to controls
for n=3 independent experiments).
doi:10.1371/journal.pone.0013883.g009

by SMF may be augmented by calcium-independent mechanisms.
For example, relevant to the endpoints measured in this study,
activation of p42/p44 MAPK has been reported to mediate
adenosine-induced nitric oxide production by both calcium-
dependent and calcium-insensitive mechanisms [63]. Therefore
we emphasize that although our results are fully consistent with a
calcium-mediated mechanism, additional experiments are re-
quired to unequivocally establish ion channels as the “biosensor”
that responds to magnetic exposure. Notwithstanding this
ambiguity, SMF reproduced cellular effects of the AgAR antagonist
AM241385 in multiple assays in PC12 cells in the current study.
Together, these results raise the intriguing hypothesis that SMI
can reproduce the effects of a promising class of non-dopaminergic
PD drugs in a non-invasive manner and, more broadly, hold
potential for ameliorating additional neurological disorders such as
Alzheimer’s and Huntington’s diseases through modulation of
AgpR [64-66].

Materials and Methods

Cell culture

Rat pheochromocytoma (PC12) cells were purchased from the
American Tissue Culture Collection (ATCC, Manassas, VA) and
grown in RPMI medium (GIBCO) that contained 10% horse
serum, 5.0% fetal bovine serum, and penicillin/streptomycin
(100 U/ml and 100 pg/ml, respectively). The cells were grown in
a water saturated incubator maintained at 5.0% CO, and 37°C
and growth medium was changed twice a week. With the
exception of the experiments evaluating neurite outgrowth (i.e.,
the results shown in Figure 8), the experiments described in this
report used undifferentiated PC12 cells; this distinction 1is
important because NGF-induced differentiated PC12 cells are less
viable than undifferentiated cells [19] and undifferentiated PC12
cells have the capability to generate increased levels of cAMP (e.g.,
during early stages of anoxia) while NGF-induced PC12 cells have
a diminished ability to produce cAMP [19].

Exposure of cells to SMF

A problem hindering the acceptance of magnetic therapy has
been that many studies have used inadequately defined treatment
devices leading to difficulties reproducing experimental condi-
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doi:10.1371/journal.pone.0013883.g010

tions from laboratory to laboratory [53]. Thus, in a previous
publication [8] we carefully described our magnetic exposure
conditions (using a device provided by the Advanced Magnetic
Research Institute, International; AMRIi, Calgary, AB). Neo-
dymium magnets are arranged in this device (shown at a
publically available link: http://www.biomedcentral.com/imedia/
1847435373293053/supp2.ppt) to provide a unidirectional field
that varies between 0.23 and 0.28 T over several centimeters
(=1 mT/mm). Consequently, the shallow nature of this gradient
ensures that individual cells are essentially exposed to uniform
fields and are not subject to spatial gradient effects observed in
cells exposed to fields that varied by =20 mT/mm [67-70].
Moreover, no dose-dependency was observed between 0.23 and
0.28 T for the endpoints tested in this report (data not shown).
Untreated control cells were maintained in a separate (but
otherwise identical) tissue culture incubator where the ambient
magnetic field was measured at ~52 mT, which is essentially
identical to the 52,359 nT field reported for a latitude of 39° 19’
35" and a longitude of —76° 36" 17" (i.e., for United States zip
code 21218) by the National Geophysical Data Center). Finally,
we have tested whether orientation of the imposed field
superimposed on — or opposing — the ambient geomagnetic field
affects the endpoints being studied; field orientation was found to
not have an effect (all experiments nonetheless were conducted
using a superimposed field orientation).

@ PLoS ONE | www.plosone.org

Measurement of Ca**

To measure Ca”, PCI12 cells were grown in 12-well tissue
culture plates for three days prior to the assay until they reached a
confluency of 85 to 90%. For measuring extracellular Ca**, PC12
cells were maintained in Ca** and Mg®* free D-PBS (Dulbecco’s
phosphate buffered saline) for the indicated time intervals (e.g., as
shown in Figure 1A) either with or without exposure to SMF. The
supernatants were collected by centrifugation at 300 x ¢ for
2.0 min and analyzed by using the Calcium Reagent Set (Pointe
Scientific Inc., Canton, MI). For measuring intracellular Ca®", the
cells were lysed by sonication on ice for 1.0 min at an amplitude
setting of 40 using a GE130PB ultrasonic processor (GE, New
York, NY). In certain experiments, the optimized time point for
evaluating Ca”" efflux (i.e., 3.0 h) was used to evaluate the impact
of AsAR agonist and antagonist on Ca®* transport by pretreating
the cells with 1.0 pM ZM241385 (4-(2-[7-amino-2-(2-furyl)[1,2,4]-
triazolo[2,3-a][1,3,5]triazin-5-ylamino|ethyl)-phenol, an adeno-
sine Ags receptor (AgaR)-specific antagonist, Tocris Bioscience,
St. Louis, MO) or SMF for 40 min in Ca®" and Mg** free D-PBS
and then incubating each set of cells with 1.0 uM CGS21680 (4-
[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuronamidosyl)-9H-purin-
2yl]amino]ethyl]benzenepropanoic acid hydrochloride, an aden-
osine Agp receptor (AgaR)-specific agonist; Tocris Bioscience) or
maintaining SMI exposure for an additional three hours before
performing the assays described above.
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Quantitative real-time PCR (gRT-PCR) measurement of
AZAR mMRNA

PC12 cells were treated with L-type Ca®* channel activator
(10 nM Bay K8644) or L-type Ca”*" channel blocker (100 nM
nifedipine) for 24 h; alternatively, they were incubated with
CGS21680, ZM241385, or exposed to SMF as described above
and used for qRT-PCR (described below) and western blot
analysis (described in the following sections).

Forward and reverse primers for AgaR and the housekeeping
gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were
designed by using Primer® software [71] and were obtained from
MWG-Biotech (High Point, NC). The sequences were as follows:
AoaR 5'-GGACTCGGATTTGGATT-3' (forward primer) and
5-TGTTGGCAGCGTATGT-3" (reverse primer); housekeeping
genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH): 5'-
GCAAATTCCATGGCA CCGT-3" (forward primer) and 5'-
TCGCCCCACTTGATTTTGG-3(reverse primer) were moni-
tored in each experiment. The basic protocol followed for qRT-
PCR experiments began with the isolation of total RNA from
5.0x10° cells with the RNeasy Mini Kit (Qiagen, Valencia, CA) or
by the TRIzol (Invitrogen) method. RNA quality was assessed by
agarose gel electrophoresis (1.8% gels run with TAE buffer
followed by nucleic acid band visualization under UV illumination
after ethidium bromide staining) and quantified by Aygo/ 4250 OD
readings. RNA integrity was confirmed using 18 S rRNA primers,
and samples were standardized based on equal levels of B-actin
cDNA. Quantitative real-time PCR was performed in an ABI
Prism 7000 sequence detector (Applied Biosystems) using SYBR
Green PCR Master Mix reagent (Applied Biosystems). Reactions
were performed in 20 pl of a mixture containing a 2.0-ul cDNA
dilution, 1.0 ul (10 pmol/pl) of each primer, and 10 pl of 2x
SYBR master mix containing Amplitaq Gold DNA polymerase,
reaction buffer, a dNTP mixture with dUTP, passive reference,
and the SYBR Green I. PCR conditions were as follows: one cycle
at 2.0 min at 50°C, then 95°C for 10 min, followed by 40 cycles of
95°C for 15 s and 60°C for 1.0 min. Specific PCR products were
detected with the fluorescent double-stranded DNA binding dye,
SYBR Green [72]. PCR amplification was performed in triplicate
and replicated in three independent experiments. Gel electropho-
resis and melting curve analyses were performed to confirm
correct PCR product sizes and the absence of nonspecific bands.
The expression levels of each gene were normalized against
GAPDH using the comparative C'T method according to the
manufacturer’s protocols [73].

Plasma membrane preparation

PC12 cells were seeded in 100 mm culture dishes and
pretreated with 1.0 uM CGS21680 for 30 min, then treated with
1.0 pM ZM241385 or exposed to SMF for 48 h. The cells were
harvested by scraping from the plates and then collected by
centrifugation at 300 x g for 2.0 min at 4.0°C. The plasma
membrane protein extraction kit (BioVision, Mountain View, CA)
was used according to the manufacturer’s protocol to specifically
isolate the plasma membrane from the total cellular membranes.
The plasma membrane fraction was dissolved in 0.5% Triton X-
100 in PBS, and plasma membrane protein concentration was
measured using the BCA protein assay (Pierce) and then 40 ug
protein of each sample was used for western blot analysis.

Western blot analysis

An equal amount of protein from each sample (40 ug) was
incubated for 5.0 min at 100°C in Laemmli buffer (Bio-Rad),
separated on an 11% SDS-polyacrylamide discontinuous gel, and
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then electrophoretically transferred to a nitrocellulose membrane
(Bio-Rad). The membrane was blocked with Tris-buffered saline
containing 5.0% nonfat milk and 0.1% Tween 20 for 1.0 h at
room temperature and then incubated overnight with rabbit
phospho-p44/42 MAPK monoclonal antibody, p44/42 MAPK
antibody (1:1000 dilution) (Cell Signaling Technology, Beverly,
MA) and anti-adensosine Aga receptor rabbit antibody (Abcam
Inc, Cambridge, MA) at 4.0°C, followed by anti-rabbit IgG,
horseradish peroxidase-linked antibody (1:2000) for 1.0 h. Bound
antibody on the membrane was detected using the SuperSignal
West Dura Extended Duration Substrate (Pierce) according to the
protocols supplied by the manufacturer. Quantification of bands
was performed by using the NIH Image] software (available on the
World Wide Web at rsh.info.nih.gov/nih-image) following a
published method [74].

Measurement of cellular ATP

ATP was measured using a chemiluminescence method
employing a luciferin-luciferase reaction [75]; the assay reagents
were purchased as a kit (ATP bioluminescent somatic cell assay kit,
FL-ASC; Sigma) and prepared according to the manufacturer’s
mstructions. PC12 cells were plated on 35-mm-diameter dishes
and left untreated, incubated with 1.0 uM or CGS21680 or
1.0 pM ZM241385, or exposed to SMF for 6.0 h cells and then
harvested and suspended in 0.5 ml of RPMI. Cell samples (50 ul)
were placed into a tube that contained 100 pl of somatic cell
releasing reagent and 50 pl of sterile purified water (SAM) or an
ATP standard (2.0 nmol/ml) as internal standard (IS) and swirled
briskly. An portion of this mixture (100 pl) was transferred to a
reaction vial that contained 100 pl of assay mix solution, and then
the amount of light emitted, L, was immediately measured with a
luminometer (Modulus, Turner Biosystem, Sunnyvale, CA). The
amount of ATP in the cell sample was calculated by the following
equation: ATPSxyy = ATPs X Lsam/(Lsamas-Lsam), where
ATPsp\ stands for the ATP in the cell sample, ATP;s for the ATP
in the internal standard, Lsan for the light emitted by the cell
sample, and Lsanirs for the light emitted by the cell sample plus
the internal standard.

HPLC measurement of adenosine (ADO) levels

PC12 cells were plated in 35 mm tissue culture dishes. When
the cells reached 90% confluency, the dishes were rinsed twice
with 2.0 ml of Krebs solution that contained 135 mM
NaClL1.5 mM NaHy,PO,, 50mM KCI, 2.0 mM CaCly,
2.0 mM MgCly, 10 mM glucose, 15 mM HEPES, and the
ADO deaminase (ADA) inhibitor [erythro-9-(2-hydroxy-3-non-
yl)adenosine (EHNA) at 1.0 uM. To measure the release of ADO
using a procedure that avoids the potential production of ADO via
the degradation of endogenous adenine nucleotides, 0.5 ml of the
prewarmed Krebs solution including 1.0 pM EHNA was placed
onto the plated cells (EHNA was included to inhibit extracellular
degradation of ADO by ADA). After incubation for 3.0 h, the
extracellular fluid was collected and the samples were processed to
extract ADO as reported previously [28,76]; briefly, the
extracellular fluids were rapidly collected into microcentrifuge
tubes and centrifuged at 14,000 x g for 1.0 min. Supernatants
(400 pl) were placed into separate tubes and deproteinated with
20 pl of 100% trichloroacetic acid. The acid-precipitated protein
was removed by centrifugation at 14,000 x g for 5.0 min, and
300 ul of supernatant was immediately neutralized with 40 pl of
3.3 M KOH. The adenine nucleotides were precipitated by
adding 200 pl of 1.0 M zinc sulfate and 100 pl of saturated
barium hydroxide, vortex mixing for 10 s, and centrifuging at
14,000 x g for 5.0 min. The samples were then analyzed by
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HPLC; separation of compounds was achieved using a 4-mm (1.d.),
15-cm-long prepacked Novapak C18 column. Samples were
eluted from the column using a gradient (0-40%, 35 min) of
low-strength eluent (0.02 mol/L potassium dihydrogen phosphate
buffer, pH 5.5) and high-strength eluent [60:40 (vol/vol) mixture
of methanol and water|. The flow rate was 1.0 ml/min, and the
column temperature was ambient in all the determinations. Peaks
were identified on the basis of retention times in comparison with
an authentic standard of ADO.

cAMP assays

On the day of the cAMP assay, 5.0x10° cells were placed in fresh
medium and incubated with 1.0 uM CGS21680, 1.0 uM
ZM241385, or SMF in the presence of 1.0 U/ml adenosine
deaminase (ADA) for 3.0 h. Cells were then harvested, lysed in
500 ul 0.1 M HCI for 20 min, centrifuged at 700 x g for 10 min,
and the supernatants were assayed for cellular cAMP accumulation
using the cAMP enzyme immunoassay system kit (Sigma-Aldrich,
St. Louis, MO) following protocols supplied by the manufacturer.

Nitrite assays

Nitric oxide (NO) production was assessed by measuring the
amount of nitrite, a stable metabolic product of NO that provides
an indirect measurement of NO, by using the Griess diazotization
reaction [77]. Briefly, after 24 h after incubation with 1.0 uM
CG21680 or 1.0 uM ZM241385 or exposure to SMF, samples of
medium (150 pl) were collected from cells and mixed with 130 ul
dH20 and with 20 ul Griess reagent using instruction supplied by
the manufacturer (Cat. No. G-7921, Invitrogen-Molecular Probes,
Carlsbad, CA). After a 30 min incubation period at room
temperature, the samples were evaluated spectrophotometrically
at 548 nm and OD values — in comparison with a standard curve
was determined in culture medium by using serial dilutions of
sodium nitrite — represented total stable metabolites of NO.

Measurement of neurite outgrowth

PC12 cells grown on coverslips were changed into differenti-
ation medium (1.0% horse serum with 25 ng/ml NGF) 24 h after
being passaged. The cells were then pretreated with 1.0 pM
CGS21680 for 30 min followed by the addition of 1.0 pM
ZM241385 or exposure to SMF for an additional three days
followed by staining with F-actin conjugated with Oregon
Green488 phalloidin (1:100) (Molecular Probes, now Invitrogen,
Eugene, OR). The coverslips were mounted using ProLong Gold®
anti-fade reagent (Molecular Probes, Cat. No. P36934) and
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imaged by using a Zeiss 510 Meta confocal microscope. From
cach slide at least 100 cells from five randomly selected fields were
counted. Cells were classed as differentiated if they exhibited an
outgrowth extending from the cell which was at least 1.5 times the
diameter of the cell. Measurements were carried out using NIH
Scion image software.

Quantification of intracellular iron

Intracellular iron was quantified using a colorimetric assay
described by Riemer et al [78]. Briefly, stimulus-treated or control
PC12 cells grown in 48-multiwell cell culture plates were
incubated in the presence of 50 uM FeSOy for 2.0 h. The culture
medium was removed and cells were washed twice with ice-cold
PBS. Cells were frozen in the culture plates and stored at —20°C.
Cells were lysed with 50 mM NaOH for 2.0 h on a shaker in a
humidified atmosphere. Aliquots of these samples were incubated
with equal amounts of 10 mM HCI and a 1:1 solution of 1.4 M
HC1/4.5% (wt/vol) KMnO, for 2.0 h in a 60°C prewarmed water
bath under the fume hood to release all intracellular protein-
bound iron. The cells were allowed to cool to room temperature
before 60 ul of a 60°C detection solution containing 6.5 mM
ferrozine (Sigma), 6.5 mM neocuproine (Sigma), 2.5 M ammoni-
um acetate, and 1.0 M ascorbic acid (Sigma) was added. Color
reading of the supernatant was done in an ELISA reader at
550 nm. For quantification, an appropriate standard curve was
prepared by using a 10 mM FeSO, stock solution.

Statistical analysis

Results are expressed as mean values of three or more
independent experiments and error bars represent standard error
of the mean (S.E.M.) calculations; statistical analyses were made
using the Student unpaired ttest or ANOVA followed by the
appropriate post hoc tests.
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