
1 **Far-Infrared Therapy for Cardiovascular, Autoimmune, and**
2 **Other Chronic Health Problems: A Systematic Review**

3
4 **Shanshan Shui^{1,2}, Xia Wang¹, John Y. Chiang^{3,4*}, Lei Zheng^{1,2*}**

5 ¹School of Medical Engineering, Hefei University of Technology, 230009, Hefei, China

6 ²School of Biotechnology and Food Engineering, Hefei University of Technology, 230009, Hefei, China

7 ³Department of Computer Science & Engineering, National Sun Yat-Sen University, 80424, Kaohsiung, Taiwan

8 ⁴Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 80708,
9 Kaohsiung, Taiwan

10
11
12
13
14 ***Corresponding authors:**

15 Lei Zheng, Ph.D.

16 School of Medical Engineering,

17 Hefei University of Technology, 230009, Hefei, People's Republic of China

18 Tel: +86-551-62919398; E-mail: lzheng@hfut.edu.cn; lei.zheng@aliyun.com.

19
20 John Y. Chiang, Ph.D.

21 Department of Computer Science & Engineering,

22 National Sun Yat-Sen University, 80424, Kaohsiung, Taiwan

23 Tel: +886-934151515; E-mail: chiang@cse.nsysu.edu.tw

24

25

26

27

28

29

30

31

32

33 **Abstract:** Physical therapy (physiotherapy), a complementary and alternative medicine therapy, has been
34 widely applied in diagnosing and treating various diseases and defects. Increasing evidence suggests that
35 convenient and noninvasive far-infrared (FIR) rays, a vital type of physiotherapy, improve the health of patients
36 with cardiovascular disease, diabetes mellitus, and chronic kidney disease. Nevertheless, the molecular
37 mechanisms by which FIR functions remain elusive. Hence, the purpose of this study was to review and
38 summarize the results of previous investigations and to elaborate on the molecular mechanisms of FIR therapy
39 in various types of disease. In conclusion, FIR therapy may be closely related to the increased expression of
40 endothelial nitric oxide synthase as well as nitric oxide production and may modulate the profiles of some
41 circulating miRNAs; thus, it may be a beneficial complement to treatments for some chronic diseases that yields
42 no adverse effects.

43 **Keywords:** physical therapy, far-infrared (FIR), cardiovascular disease (CVD), diabetes mellitus (DM), miRNA

44

45 **Running title:** Far-Infrared Therapy for Chronic Diseases

46

47

48

49

50

51 **1 Introduction**

52 Infrared radiation is an invisible form of electromagnetic energy, the wavelength of which is
53 longer than that of visible light. Infrared radiation can be categorized into 3 groups according
54 to wavelength, namely near infrared (NIR, 0.8–1.5 μm), middle infrared (MIR, 1.5–5.6 μm),
55 and far infrared (FIR, 5.6–1000 μm).¹ Infrared radiation probably enables multiple forms of
56 energy to be transferred into subcutaneous tissue (approximately 2 to 3 cm deep) without
57 stimulation or excessive heating.² In one study, skin temperature increased to 38–39°C after
58 FIR treatment for 30 min to 1 h with 20 cm of spacing between ceramic plates and the skin.³
59 Thus, FIR therapy may yield none of the side effects of traditional thermal therapy, such as
60 infection or burn injury, and has therefore been widely employed to promote health.

61 FIR treatment methods can be divided into two categories according to clinical
62 implementation in general. In the first category, an FIR emitter composed of electrified
63 ceramic plates is placed 20 cm above a patient and provides low energy to increase skin
64 temperature steadily.³ In addition, the FIR radiator is frequently used in experiments for local
65 (or point) treatment by maintaining the surface temperature lower than 40°C. In the other more
66 prevalent category, FIR dry sauna therapy,⁴ light is employed to create heat by using a sauna.
67 Unlike traditional saunas, which apply heat to warm the body by increasing the ambient air
68 temperature, FIR saunas heat the body directly without employing the air as a heat transfer
69 medium.⁵ In a previous study, sauna therapy was performed using an FIR dry sauna device at
70 60°C for 15 min, followed by traditional warm keeping for 30 min.⁶

71 Although previous studies have shown that FIR radiation produces thermal and
72 nonthermal effects, such as increasing artery blood flow⁷ and peripheral blood circulation,⁸
73 improving endothelial function,⁹ alleviating fatigue¹⁰ and pain,¹¹ reducing blood pressure,¹²
74 and promoting capillary dilatation,¹³ the precise mechanism has yet to be thoroughly
75 understood. Therefore, the purposes of this study were to review and summarize published
76 data on FIR therapy on different types of disease (Table 1) and to delineate the mechanisms of
77 FIR therapy.

78 **2 FIR Therapy for Cardiovascular Disease**

79 *2.1 Cardiovascular Disease*

80 Cardiovascular disease (CVD), the leading cause of deaths worldwide, refers to any disease
81 affecting the cardiovascular system including cerebral and renal vascular diseases, cardiac
82 disease, and peripheral arterial disease.¹⁴ The most common factors that induce CVD are
83 atherosclerosis and hypertension. Moreover, even in healthy asymptomatic elderly people,
84 various alterations in physiology and morphology affect cardiovascular function and thus
85 result in an increased risk of CVD;¹⁵ thus, determining treatments for curing the disease is
86 imperative.

87 *2.2 Effects of FIR on CVD*

88 Evidence has indicated that FIR rays exert protective effects on CVD. Several weeks of sauna
89 therapy markedly enhanced flow-mediated endothelium-dependent dilation of the brachial
90 artery ($P < 0.001$),¹⁶⁻¹⁸ which was associated with an increase in cardiopulmonary exercise
91 tolerance.^{17,18} Because endothelial dysfunction is typically observed in patients with

92 hypertension,¹⁹ hypercholesterolemia,²⁰ diabetes mellitus (DM),²¹ and obesity and patients
93 who smoke,²² sauna treatments probably play a therapeutic role for patients with coronary risk
94 factors, suggesting that sauna treatments improve vascular endothelial function.

95 Compelling evidence has indicated that vascular endothelial function is closely
96 associated with endothelial nitric oxide synthase (eNOS), which catalyzes the amino acid
97 L-arginine into L-citrulline and nitric oxide (NO) in the endothelium. NO is a crucial
98 vasodilator substance, which prevents the progression of atherosclerosis by dilating blood
99 vessels and inhibiting some arterial disorders such as platelet aggregation and the migration
100 and proliferation of smooth muscle cells.²³ Ikeda et al. reported that 1 month of FIR sauna
101 therapy significantly upregulated eNOS mRNA and protein expression (0.73 ± 0.04 vs. $1.02 \pm$
102 0.02 , $P < 0.01$; 3250 ± 70 vs. 4090 ± 60 , $P < 0.01$, respectively) as well as serum NO
103 production (3.98 ± 0.43 mmol/L vs. 4.66 ± 0.5 mmol/L, $P < 0.05$) in cardiomyopathic hamsters
104 with chronic heart failure (CHF).²⁴ In addition to enhancing eNOS expression, FIR increases
105 NO production probably by promoting the Ca^{2+} /calmodulin-dependent protein kinase II
106 (CaMKII)-mediated phosphorylation of eNOS at serine 1179 to increase eNOS activity.²⁵
107 Although FIR radiation can notably increase the temperature of culture media and
108 intracellular Ca^{2+} levels, temperature-sensitive calcium channels and transient receptor
109 potential vanilloid may not contribute to the pathway of the CaMKII-mediated
110 phosphorylation of eNOS.²⁵ Thus, we propose that the nonthermal effects of FIR radiation, as
111 has been recently shown for other types of nonionizing radiation,²⁶ may be involved in this
112 pathway by activating voltage-gated calcium channels.²⁷ Nevertheless, all of these

113 mechanisms suggested that upregulating NO production by increasing eNOS expression level
114 and its phosphorylation level is a critical manner in which FIR therapy improves endothelial
115 function in patients with CHF.

116 Notably, urinary 8-epi-prostaglandin F_{2α} (a product of lipid peroxidation) levels were
117 markedly lower in participants with coronary risk factors who received an FIR dry sauna for 2
118 weeks compared with those of controls.²⁸ Because 8-epi-prostaglandin F_{2α} is a reliable marker
119 of oxidative stress in vivo, and oxidative stress is involved in the development of
120 atherosclerosis and heart failure,²⁹ the results suggested that repeated FIR ray therapy can
121 reduce oxidative stress,³⁰ preventing the progression of atherosclerosis. Because oxidative
122 stress reduces the bioavailability of NO (free radicals can inactivate NO),³¹ a reduction in
123 oxidative stress probably indicates an improvement in endothelial function through an
124 increase in NO production.

125 The enhancement in eNOS expression caused by FIR stimulation may be related with
126 miRNA. Shear stress is crucial to increasing eNOS activity by stimulating its expression.³² All
127 of the aforementioned studies have suggested that FIR therapy accelerates peripheral blood
128 flow, leading to an increase in shear stress, followed by increases in eNOS activity and NO
129 production and upregulation of eNOS expression. Consequently, vascular endothelial function
130 and exercise tolerance are improved.

131 A previous study reported that miRNAs are essential for various CVDs because
132 depletion in the miRNA-processing enzyme engenders defects in cardiac development and
133 angiogenesis.³³ Several studies have revealed that shear stress or FIR can regulate the

134 expression of miRNAs in endothelial cells. For instance, miRNA-21 induced by shear stress
135 in endothelial cells can modulate endothelial cell apoptosis and eNOS activity as well as NO
136 production.³⁴ In one study, miRNA-663 played vital roles in shear stress-induced
137 inflammatory responses by derepressing inflammatory response genes.³⁵ A recent study
138 determined that FIR treatment enhanced the expression of miRNA-31 and miRNA-720,
139 thereby increasing coronary artery disease endothelial progenitor cell (EPC) expression and
140 rescuing the angiogenic and vasculogenic abilities of EPCs both in vitro and in vivo.³⁶
141 Circulating miRNAs (e.g., miRNA-1, miRNA-17, miRNA-92a, miRNA-126, miRNA-133,
142 and miRNA-145) in the blood cells or serum/plasma have been identified as potential
143 biomarkers of CVD³⁷ and can be used for diagnosing and determining the prognosis of acute
144 myocardial infarction.³⁸ In summary, we suspect that FIR improves the endothelial function
145 of patients with CVD by increasing eNOS and NO levels by promoting shear stress and
146 altering the expression profiles of some circulating miRNAs.

147

148 **3 FIR Therapy for Diabetes Mellitus**

149 *3.1 Diabetes Mellitus*

150 **DM is a group of metabolic diseases caused either by a deficiency in insulin production (Type**
151 **1) or by development of insulin resistance (Type 2).**³⁹ Most diabetes cases can be grouped into
152 two broad etiopathogenetic categories: type 1 DM, caused by failure of the pancreas to secrete
153 insulin; and type 2 DM, caused by the inability of the body to respond properly (e.g., resistance)
154 to insulin action or insulin secretory response.⁴⁰ A person with DM (type 1 or 2) has high

155 concentrations of blood sugar, which undermine the blood vessels, nerves, kidneys, and other
156 systems of the body.⁴⁰

157 *3.2 Effects of FIR on DM*

158 Masuda et al. demonstrated that repeated dry sauna therapy by using FIR reduced urinary
159 levels of 8-epi-prostaglandin F_{2α} (an oxidative stress marker)²⁸ and that DM was associated
160 with increased oxidative stress,⁴¹ which has a marked insulin-resistance effect.⁴² Kawaura et
161 al. investigated the oxidative-stress-related modulatory effect of FIR local stimulation in
162 bedridden patients with type 2 DM.⁴³ Two weeks of local FIR therapy administered to the
163 legs significantly reduced plasma 8-epi-prostaglandin F_{2α} levels in type 2 DM patients ($P <$
164 0.05).⁴³ A reduction in eNOS bioactivity was involved in the pathogenesis of oxidative stress
165 in skeletal muscle insulin resistance.⁴⁴ Furthermore, eNOS played a critical role in regulating
166 insulin sensitivity.⁴⁵ Overall, FIR therapy may improve skeletal muscle insulin resistance
167 through eNOS expression following a decrease in oxidative stress in patients with type 2 DM.

168 Patients with DM sustain stress because of daily dietary restrictions, leading to an
169 excessive release of cortisol, causing diverse negative reactions such as hypertension.⁴⁶
170 Consequently, DM is exacerbated. Ryotokuji et al. indicated that 4 weeks of FIR radiation
171 administered to the feet of type 2 DM patients significantly reduced cortisol levels and blood
172 glucose levels.⁴⁷ Therefore, assuming that FIR therapy normalizes blood glucose levels by
173 reducing serum levels of cortisol (adrenal glucocorticoid hormones) and thereby improves the
174 ability to respond to insulin action in patients with type 2 DM is reasonable.

175 Huang et al. observed that FIR therapy increased blood flow recovery by 48%, increased
176 bone marrow-derived EPC differentiated into endothelial cells ($11.2 \pm 1.1/\text{HPF}$ vs. $18.8 \pm$
177 $2.0/\text{HPF}$, $P < 0.01$), and reduced oxidative stress ($P < 0.05$) in streptozotocine-induced
178 diabetic mice.⁴⁸ Moreover, the benefits of local FIR radiation were abolished after injection
179 with L-NAME (an eNOS inhibitor).⁴⁸ Because neovascularization requires
180 bone-marrow-derived circulating EPCs for vasculogenesis,⁴⁹ high glucose-impaired
181 capacities of EPCs probably involve NO-related mechanisms.⁵⁰ In addition, NO can modify
182 the mobilization and differentiation of EPCs,⁵¹ and an increase in free radicals in tissue
183 ischemia may downregulate NO bioavailability by directly inactivating NO.³¹ Thus, FIR
184 treatment may be related to a NO-related pathway. Moreover, FIR therapy is suggested to
185 have benefits of promoting blood flow recovery and forming new vessels by enhancing the
186 EPC homing process by reducing oxidative stress in the ischemic hindlimbs of diabetic mice.

187

188 **4 FIR Therapy for Chronic Kidney Disease**

189 *4.1 Chronic Kidney Disease*

190 Chronic kidney disease (CKD) is a progressive renal dysfunction experienced during several
191 months or years⁵² and can be classified into 5 stages (stages 1 to 5) according to severity.
192 End-stage renal disease (ESRD) is stage 5 CKD and is a severe illness with a poor prognosis
193 for which treatment with dialysis or transplantation may be required.⁵² For patients with
194 ESRD who receive hemodialysis (HD) treatment, native arteriovenous fistulas (AVFs) and

195 prosthetic arteriovenous grafts (AVGs)⁵³ are typically used to obtain the well-functioning
196 vascular access that is critical to sufficient dialysis.⁵⁴

197 *4.2 Effects of FIR on CKD*

198 Lin et al. showed that long-term FIR exposure increased access flow (Qa), reduced the
199 incidence and relative incidence of AVF malfunction, and improved the unassisted patency of
200 AVFs in HD patients.⁵⁵ Because decreasing vascular access flow (Qa) is an effective index for
201 estimating thrombosis-related access dysfunctions,⁵⁶ the improvement in the patency of AVFs
202 was likely associated with a higher value of Qa. According to Kipshidze et al.,⁵⁷ a nonablative
203 infrared laser (NIL) restrained neointimal hyperplasia and reduced the proliferation of
204 vascular smooth muscle cells (VSMCs) after percutaneous transluminal coronary angioplasty
205 in cholesterol-fed rabbits for 60 days. Because the growth of VSMCs increases the risk of
206 vascular access stenosis in HD patients,⁵⁸ inhibiting neointimal hyperplasia may be one
207 mechanism through which FIR therapy improves vascular restenosis progression in patients
208 with ESRD.

209 Furthermore, Lai et al. investigated the effect of FIR treatment on HD access maintenance
210 after percutaneous transluminal angioplasties (PTAs) in AVG and AVF populations.⁵⁹ The data
211 showed that a radiated group of patients with AVGs exhibited significantly improved
212 unassisted patency at 1 year (16.3% vs. 2.1%, $P < 0.05$).⁵⁹ However, in the AVF population,
213 post-PTA FIR radiation therapy nonsignificantly improved the unassisted patency rate.⁵⁹ The
214 results of clinical trials of FIR radiation therapy were inconsistent with those of Lin et al.,⁵⁵
215 possibly because most patients examined by Lin et al. received no PTA treatment.⁵⁵ Overall,

216 because of the improvement in unassisted patency, FIR radiation therapy may benefit
217 PTA-treated AVG and AVF patients who are high-functioning or have not received repeated
218 PTA.

219 The failure of an AVF to mature is a critical pathologic reason for the malfunction of
220 newly created AVFs in people at advanced stages of CKD.⁶⁰ Lin et al. reported that 3 months
221 of FIR treatment can enhance the rate of AVF maturation significantly (90% vs. 76%, $P <$
222 0.05).⁶¹ In addition, they demonstrated that FIR stimulation provided substantial benefits of
223 increasing access flow and the rates of AVF unassisted patency and clinical maturation as
224 well as lowering AVF malfunction within 1 year compared with controls.⁶¹ These results were
225 identical to those of their previous study.⁵⁵ Endothelial dysfunction associated with AVF
226 stenosis may lead to AVF maturation failure in HD patients.⁵⁸ In summary, FIR benefitted HD
227 patients by promoting endothelial function in both animal^{3,7,24} and clinical studies.

228

229 **5 FIR Therapy for Ischemia**

230 *5.1 Ischemia*

231 Ischemia that triggers the unavailability of oxygen and glucose to tissues is generally ascribed
232 to blood vessel problems, resultant damage, or tissue dysfunction. If not treated immediately,
233 ischemia may aggravate rapidly to tissue necrosis and gangrene within several hours,
234 potentially leading to paralysis.⁶²

235 *5.2 Effects of FIR on Ischemia*

236 A previous study determined that FIR radiation provides a strong antiinflammatory benefit to
237 the vascular endothelium by inducing heme oxygenase-1 (HO-1) expression.⁶³ HO-1 is a
238 rate-limiting enzyme in heme oxidization of biliverdin and carbon monoxide.⁶⁴ Biliverdin can
239 be further catalyzed to a potent antioxidant bilirubin,⁶⁵ whereas carbon monoxide, similar to
240 NO, exhibited effects of vasodilation and modulating intracellular cGMP levels in one
241 study.⁶⁶ Thus, FIR probably plays a crucial role in increasing cGMP signaling. HO-1 was
242 shown to prevent testis injury in models of hypoxic preconditioning.⁶⁷ Tu et al. investigated
243 the effect of FIR postconditioning on ischemia/reperfusion (I/R) injury in rat testes.⁶⁸ The
244 results indicated that HO-1 protein in the testes was overexpressed in a group of rats with 2
245 h-ischemia I/R injury treated with FIR ray therapy for 30 min compared with untreated and
246 heat light groups.⁶⁸ In addition, administering an HO-1 inhibitor abolished the effect of FIR
247 treatment.⁶⁸ Furthermore, FIR therapy drastically reduced apoptosis and alleviated injury of
248 testis tissue,⁶⁸ suggesting that HO-1 is crucial in FIR postconditioning for protecting rat testis
249 from I/R injury.

250 In a mouse model of an ischemic hindlimb, Akasaki et al. reported that 5 weeks of FIR
251 sauna therapy markedly upregulated blood flow, capillary density, eNOS expression, and NO
252 production compared with those of controls.⁷ However, administering L-NAME suppressed
253 the effects induced by FIR stimulation.⁷

254 FIR alleviated tissue ischemia in animal^{3,7,68} and clinical studies.⁶⁹ Tei et al. reported that
255 long-term sauna therapy reduced pain scores, increased blood flow, and promoted

256 angiogenesis,⁶⁹ but was ineffective in eNOS-deficient mice. In addition, exercise tolerance
257 was upregulated.⁶⁹

258 The induction of NO by eNOS is essential for regulating angiogenesis,⁷⁰ and this process
259 can be elicited by vascular endothelial growth factor.⁷¹⁻⁷³ In summary, eNOS is a critical
260 regulator for angiogenesis in repeated FIR sauna therapy. In addition, both eNOS and
261 exercise can increase the mobilization of EPCs,^{51,69} which is vital to vasculogenesis.⁴⁸ Thus,
262 FIR may be a novel innovative therapy for treating ischemic areas.

263 Successful revascularization of an ischemic region necessitates new blood vessel growth,
264 stabilization, and maturation,^{74,75} which are critical for reducing cell death and increasing the
265 blood supply to damaged areas.⁷⁶ Because of the importance of pericytes in maintaining
266 newly generated microvessels during angiogenesis, pericyte deficiency leads to endothelial
267 cell apoptosis and destabilization of the microvasculature.⁷⁷ Thus, pericyte recruitment likely
268 plays a key role in vascular remodeling in cortical tissues after ischemic stroke. Furthermore,
269 a recent study reported that pericyte relaxation increased blood flow *in vivo*.⁷⁸ Because FIR
270 rays enhance blood flow and improve ischemic areas, although the exact mechanism has not
271 been elucidated, we speculate that FIR rays positively affect pericytes after ischemia.

272

273 **6 FIR Therapy for Other Diseases**

274 FIR therapy is effective in relieving pain in patients with chronic pain,⁷⁹ chronic fatigue
275 syndrome,⁸⁰ and fibromyalgia.^{81,82} FIR benefitted trained runners who suffered from muscle
276 damage⁸³ and patients who experienced persistent and progressively increasing phantom limb

277 pain after amputation.⁸⁴ Furthermore, FIR stimulation alleviated depression in patients with
278 insomnia by increasing serotonin and reducing malondialdehyde levels.⁸⁵ However, a case of
279 pseudolymphoma occurring in a blue-green tattoo was thought to be related to FIR light
280 exposure and induced sweating.⁸⁶ These effects on living organisms exposed to FIR rays are
281 poorly understood; therefore, further study is required.

282

283 **7 Conclusion and Perspectives**

284 As a potential complementary therapy, FIR radiation had both thermal and nonthermal effects.
285 The thermal effect of FIR therapy could increase blood flow and vasodilation by heating the
286 tissue (hyperthermia), similar to ordinary thermal therapy composed of heat pads or hot
287 water.⁸⁷ In addition, FIR treatment with low levels of delivered energy (nonthermal effect)
288 also had biological activities.^{88,89} A study of patients receiving hemodialysis treatment had
289 shown decreases in stress and fatigue levels by FIR stimulation rather than thermal treatment
290 (heat pads), which was probably attributed to the nonthermal effect.¹⁰ A explanation of
291 nonthermal effect of such low energy levels was that nanoscopic water layers got disturbed
292 by low irradiances, leading to the change of cellular membrane structure, then made the
293 therapeutic effects.⁸⁷

294 Since FIR therapy was frequently applied in the medical field, numerous investigators
295 have attempted to determine the effects of these novel FIR rays on biological systems. FIR
296 radiation has multiple properties; thus, no direct interrelationships among the properties could
297 be identified. Possible explanations include reduction in oxidative stress, improvement in

298 endothelial function, and inhibition of neointimal hyperplasia. Regarding the effect of FIR
299 treatment on oxidative stress downregulation, Masuda et al. showed that FIR therapy reduced
300 oxidative stress in patients with coronary risk factors.²⁸ In addition, a decrease in oxidative
301 stress was observed in DM patients who received FIR therapy.^{41,48} Regarding the effect on
302 endothelial function, an intervention group exposed to FIR rays exhibited quicker
303 amelioration of endothelial function than did nonexposed controls in both CVD¹⁶ and CKD
304 populations.⁶¹ Regarding the third mechanism, Kipshidze et al. demonstrated that NIL
305 inhibited neointimal hyperplasia.⁵⁷

306 Furthermore, FIR rays have been applied in treating various chronic diseases, such as
307 hypertension, heart failure, and vascular endothelial dysfunction, which are associated with
308 the depletion of tetrahydrobiopterin (BH4), a critical cofactor for NO synthases.^{90,91} FIR
309 therapy improves blood flow in heated surface areas, causing an increase in vascular shear
310 stress and enhancement of the activity of GTP cyclohydrolase I, which benefits BH4
311 synthesis.^{92,93} Thus, the increased availability of BH4 may provide key insight into the
312 underlying mechanisms of sauna therapy. A recent study demonstrated that capillaries control
313 blood flow primarily related to active pericyte relaxation.⁷⁸ In addition, pericyte death in rigor
314 results in a permanent decrease in blood flow in capillaries and damages neurons after
315 stroke.⁹⁴⁻⁹⁶ These mechanisms resemble FIR in improving capillary dilation and blood flow
316 and may reflect the promotion of stroke recovery by FIR stimulation. In other words, FIR
317 therapy may alleviate stroke by inhibiting pericyte death.

318 Except for the aforementioned mechanisms, the eNOS and NO-increasing activity of FIR
319 radiation treatment may be recognized as a possible common background (Fig. 1).⁹⁷ An
320 increase in blood flow induced by FIR treatment increases shear stress, which is a crucial
321 determinant of endothelial function and phenotype in atherosclerosis. Furthermore, previous
322 evidence has shown that shear stress regulated the expression of miRNAs in endothelial cells,
323 and miRNAs influence endothelial biology by reducing apoptosis and activating the NO
324 pathway.³⁴ Therefore, FIR therapy is a potential therapeutic method for treating CVD because
325 it increases shear stress by regulating the expression of miRNA. Overall, FIR ray treatment
326 accelerates peripheral blood flow, leading to an increase in shear stress; consequently, the
327 miRNA levels are elevated, followed by an increase in eNOS and NO production.

328 The expression of NOS activity and miRNA has a circadian rhythm and is closely
329 associated with control mechanisms governing circadian expression. Ayers et al. reported that
330 NOS activity in the kidneys of mice exhibited a clear circadian variation. The highest level
331 occurred during the dark period and the lowest level occurred during the light period.⁹⁸ In
332 addition, NOS activation mediated the phase-shifting effects of melatonin and
333 5-hydroxytryptamine on a suprachiasmatic nuclei (SCN) circadian pacemaker in rats.⁹⁹
334 Moreover, as key regulators of the circadian timing process, miRNA-219 and miRNA-132
335 levels in SCN exhibited a salient rhythm, the highest level of which occurred during the
336 subjective day.¹⁰⁰ In addition, several miRNAs are involved in the modulation of the
337 peripheral circadian rhythm in mouse livers.^{101,102} Circadian rhythms have been observed in
338 the incidences of cerebrovascular diseases, arterial diseases, and ischemic stroke.^{103,104} These

339 results suggested that the diurnal variation of NOS and miRNAs may be related with that of
340 the onset of some chronic diseases. Therefore, FIR rays may have striking therapeutic effects
341 on medical treatments on the basis of a circadian rhythm. However, further research
342 considering objective parameters and sufficient sample sizes must be conducted in animal
343 models and clinical applications to completely reveal the functional effect of circadian
344 rhythms on FIR rays.

345

346 *Author Contributions*

347 LZ provided ideas and research directions; SSs wrote the sections on FIR therapy for CVD,
348 FIR therapy for DM, and FIR therapy for CKD; XW wrote the sections on FIR therapy for
349 ischemia and FIR therapy for other diseases; and JYC provided program support.

350

351 *Acknowledgments*

352 We thank Professor Jian Liu for the valuable comments. This study was supported by the
353 specialized Research Fund for the Doctoral Program of Higher Education (20120111110024),
354 the Fundamental Research Funds for the Central Universities (2012HGCX0003,
355 2013HGQC0045, JZ2014HGBZ0050), the National Key Technologies R&D Programme
356 (2012BAD07B01), and the Funds for Huangshan Professorship of Hefei University of
357 Technology.

358

359

360 *References*

- 361 1. Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S, Naknishi H, A-Hon Kwon, Azuma
362 Y, Nagaoka T, Ogawa T, Kamiyama Y. Promotive effects of far-infrared ray on full-thickness skin wound
363 healing in rats. *Exp Biol Med (Maywood)*. Jun 2003;228(6):724-729.
- 364 2. Hartel M, Hoffmann G, Wente MN, Martignoni ME, Buchler MW, Friess H. Randomized
365 clinical trial of the influence of local water-filtered infrared A irradiation on wound healing after
366 abdominal surgery. *The British journal of surgery*. Aug 2006;93(8):952-960.
- 367 3. Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY, Wu CW. Biological effect of far-infrared
368 therapy on increasing skin microcirculation in rats. *Photodermatology, photoimmunology &*
369 *photomedicine*. Apr 2006;22(2):78-86.
- 370 4. Tei C. Waon therapy: soothing warmth therapy. *Journal of cardiology*. Jun
371 2007;49(6):301-304.
- 372 5. Bauer BA. Do infrared saunas have any health benefits?
- 373 6. Tei C, Horikiri Y, Park J-C, Jeong J-W, Chang K-S, Toyama Y, Tanaka N. Acute
374 hemodynamic improvement by thermal vasodilation in congestive heart failure. *Circulation*.
375 1995;91(10):2582-2590.
- 376 7. Akasaki Y, Miyata M, Eto H, Shirasawa T, Hamada N, Ileda Y, Brio S, Otsuji Y, Tei C.
377 Repeated thermal therapy up-regulates endothelial nitric oxide synthase and augments angiogenesis in a
378 mouse model of hindlimb ischemia. *Circulation journal: official journal of the Japanese Circulation
379 Society*. 2006;70(4):463-470.
- 380 8. Ise N, Katsuura T, Kikuchi Y, Miwa E. Effect of far-infrared radiation on forearm skin blood
381 flow. *The Annals of physiological anthropology= Seiri Jinruigaku Kenkyūkai kaishi*. 1987;6(1):31.
- 382 9. Kihara T, Biro S, Imamura M, Yoshijuku S, Takasaki K, Ikeda Y, Otuji Y, Minagoe S,
383 Toyama Y, Tei C. Repeated sauna treatment improves vascular endothelial and cardiac function in
384 patients with chronic heart failure. *Journal of the American College of Cardiology*. 2002;39(5):754-759.
- 385 10. Su LH, Wu KD, Lee LS, Wang H, Liu CF. Effects of far infrared acupoint stimulation on
386 autonomic activity and quality of life in hemodialysis patients. *The American journal of Chinese
387 medicine*. 2009;37(2):215-226.
- 388 11. Oosterveld FG, Rasker JJ, Floors M, Johannes J. Rasker, Mark Floors, Robert Landkroon,
389 Bob van Rennes, Jan Zwijnenberg, Mart A. F. H. van de Laar, Gerard J. Koel. Infrared sauna in patients
390 with rheumatoid arthritis and ankylosing spondylitis. *Clinical rheumatology*. 2009;28(1):29-34.
- 391 12. Ryotokuji K, Ishimaru K, Kihara K, Namiki Y, Hozumi N. Effect of pinpoint plantar
392 long-wavelength infrared light irradiation on subcutaneous temperature and stress markers. *Laser
393 therapy*. 2013;22(2):93.
- 394 13. Matsumoto S, Kawahira K, Etoh S, Ikeda S, Tanaka N. Short-term effects of thermotherapy
395 for spasticity on tibial nerve F-waves in post-stroke patients. *International journal of biometeorology*.
396 2006;50(4):243-250.
- 397 14. Fuster V, Kelly BB. *Promoting cardiovascular health in the developing world: a critical
398 challenge to achieve global health*: National Academies Press; 2010.
- 399 15. Dantas AP, Jimenez-Altayo F, Vila E. Vascular aging: facts and factors. *Frontiers in
400 physiology*. 2012;3:325.

401 **16.** Imamura M, Biro S, Kihara T, Yoshifuku S, Takasaki K, Otsuji Y, Minagoe S, Toyama Y, Tei
402 C. Repeated thermal therapy improves impaired vascular endothelial function in patients with coronary
403 risk factors. *Journal of the American College of Cardiology*. Oct 2001;38(4):1083-1088.

404 **17.** Sobajima M, Nozawa T, Ihori H, Shida T, Ohori T, Suzuki T, Matsuki A, Yasumura S, Inoue
405 H. Repeated sauna therapy improves myocardial perfusion in patients with chronically occluded
406 coronary artery-related ischemia. *International journal of cardiology*. Jul 15 2013;167(1):237-243.

407 **18.** Ohori T, Nozawa T, Ihori H, Shida T, Sobajima M, Matsuki A, Yasumura S, Inoue H. Effect
408 of repeated sauna treatment on exercise tolerance and endothelial function in patients with chronic heart
409 failure. *The American journal of cardiology*. Jan 1 2012;109(1):100-104.

410 **19.** Panza JA, Quyyumi AA, Brush JE, Jr., Epstein SE. Abnormal endothelium-dependent
411 vascular relaxation in patients with essential hypertension. *The New England journal of medicine*. Jul 5
412 1990;323(1):22-27.

413 **20.** Sorensen K, Celermajer D, Georgakopoulos D, Hatcher G, Betteridge D, Deanfield J.
414 Impairment of endothelium-dependent dilation is an early event in children with familial
415 hypercholesterolemia and is related to the lipoprotein (a) level. *Journal of Clinical Investigation*.
416 1994;93(1):50.

417 **21.** Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired
418 endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. *Circulation*.
419 Dec 1993;88(6):2510-2516.

420 **22.** Celermajer D, Sorensen K, Georgakopoulos D, Bull C, Thomas O, Robinson J, Deanfield J.
421 Cigarette smoking is associated with dose-related and potentially reversible impairment of
422 endothelium-dependent dilation in healthy young adults. *Circulation*. 1993;88(5):2149-2155.

423 **23.** Anggard E. Nitric oxide: mediator, murderer, and medicine. *Lancet*. May 14
424 1994;343(8907):1199-1206.

425 **24.** Ikeda Y, Biro S, Kamogawa Y, Yoshifuku S, Eto H. Repeated sauna therapy increases arterial
426 endothelial nitric oxide synthase expression and nitric oxide production in cardiomyopathic hamsters.
427 *Circulation journal : official journal of the Japanese Circulation Society*. Jun 2005;69(6):722-729.

428 **25.** Park JH, Lee S, Cho DH, Park YM, Kang DH, Jo I. Far-infrared radiation acutely increases
429 nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein
430 kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. *Biochemical and
431 biophysical research communications*. Jul 12 2013;436(4):601-606.

432 **26.** Pall ML. Electromagnetic fields act via activation of voltage - gated calcium channels to
433 produce beneficial or adverse effects. *Journal of cellular and molecular medicine*. 2013;17(8):958-965.

434 **27.** Yuill KH, McNeish AJ, Kansui Y, Garland CJ, Dora KA. Nitric oxide suppresses cerebral
435 vasomotion by sGC-independent effects on ryanodine receptors and voltage-gated calcium channels.
436 *Journal of vascular research*. 2009;47(2):93-107.

437 **28.** Masuda A, Miyata M, Kihara T, Minagoe S, Tei C. Repeated sauna therapy reduces urinary
438 8-epi-prostaglandin F(2alpha). *Japanese heart journal*. Mar 2004;45(2):297-303.

439 **29.** Singh N, Dhalla AK, Seneviratne C, Singal PK. Oxidative stress and heart failure. *Cellular
440 Interactions in Cardiac Pathophysiology*: Springer; 1995:77-81.

441 30. Patrono C, FitzGerald GA. Isoprostanes: potential markers of oxidant stress in
442 atherosclerotic disease. *Arteriosclerosis, thrombosis, and vascular biology*. Nov
443 1997;17(11):2309-2315.

444 31. Gryglewski R, Palmer R, Moncada S. Superoxide anion is involved in the breakdown of
445 endothelium-derived vascular relaxing factor. 1986.

446 32. Malek AM, Izumo S, Alper SL. Modulation by pathophysiological stimuli of the shear
447 stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells.
448 *Neurosurgery*. 1999;45(2):334.

449 33. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial
450 microRNA expression and angiogenesis. *Circulation research*. 2007;101(1):59-68.

451 34. Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear
452 stress and modulates apoptosis and eNOS activity. *Biochemical and biophysical research
453 communications*. 2010;393(4):643-648.

454 35. Ni C-W, Qiu H, Jo H. MicroRNA-663 upregulated by oscillatory shear stress plays a role in
455 inflammatory response of endothelial cells. *American Journal of Physiology-Heart and Circulatory
456 Physiology*. 2011;300(5):H1762-H1769.

457 36. Wang H-W, Huang T-S, Lo H-H, Huang P-H, Lin C-C, Chang S-J, Liao K-H, Tsai C-H, Chan
458 C-H, Tsai C-F, Cheng Y-C, Chiu Y-L, Tsai T-N, Cheng C-C, Cheng S-M. Deficiency of the
459 MicroRNA-31-MicroRNA-720 Pathway in the Plasma and Endothelial Progenitor Cells From Patients
460 With Coronary Artery Disease. *Arteriosclerosis, thrombosis, and vascular biology*. 2014;34(4):857-869.

461 37. Di Stefano V, Zaccagnini G, Capogrossi MC, Martelli F. microRNAs as peripheral blood
462 biomarkers of cardiovascular disease. *Vascular pharmacology*. 2011;55(4):111-118.

463 38. Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive
464 biomarkers of acute myocardial Infarction. *Clinical biochemistry*. 2012;45(10):727-732.

465 39. Gardner DG, Shoback DM. *Greenspan's basic & clinical endocrinology*: McGraw-Hill
466 Medical New York;: 2007.

467 40. Association AD. Diagnosis and classification of diabetes mellitus. *Diabetes care*.
468 2008;31(Supplement 1):S55-S60.

469 41. Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna
470 E, Bucciarelli T, Costantini F, Capani F, Patrono C. In Vivo Formation of 8-Iso-Prostaglandin F2 α and
471 Platelet Activation in Diabetes Mellitus Effects of Improved Metabolic Control and Vitamin E
472 Supplementation. *Circulation*. 1999;99(2):224-229.

473 42. Wright D, Sutherland L. Antioxidant supplementation in the treatment of skeletal muscle
474 insulin resistance: potential mechanisms and clinical relevance. *Applied Physiology, Nutrition, and
475 Metabolism*. 2008;33(1):21-31.

476 43. Kawaura A, Tanida N, Kamitani M, Akiyama J, Mizutani M, Tsugawa N, Okano T, Takeda E.
477 The Effect of Leg Hyperthermia Using Far Infrared Rays in Bedridden Subjects with Type 2 Diabetes
478 Mellitus. *Acta Med Okayama*. Apr 2010;64(2):143-147.

479 44. Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R, Channon KM. Vascular
480 superoxide production by NAD (P) H oxidase association with endothelial dysfunction and clinical risk
481 factors. *Circulation research*. 2000;86(9):e85-e90.

482 **45.** Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, Vollenweider P, Pedrazzini T,
483 Nicod P, Thorens B, Scherrer U. Insulin resistance, hyperlipidemia, and hypertension in mice lacking
484 endothelial nitric oxide synthase. *Circulation*. 2001;104(3):342-345.

485 **46.** Roy MS, Roy A, Brown S. Increased urinary-free cortisol outputs in diabetic patients.
486 *Journal of diabetes and its complications*. 1998;12(1):24-27.

487 **47.** Ryotokuji K, Ishimaru K, Kihara K, Namiki Y, Hozumi N. Preliminary results of pinpoint
488 plantar long-wavelength infrared light irradiation on blood glucose, insulin and stress hormones in
489 patients with type 2 diabetes mellitus. *Laser therapy*. 2013;22(3):209-214.

490 **48.** Huang PH, Chen JW, Lin CP, Chen YH, Chen YH, Wang CH, Leu HB, Lin SJ. Far infra-red
491 therapy promotes ischemia-induced angiogenesis in diabetic mice and restores high glucose-suppressed
492 endothelial progenitor cell functions. *Cardiovascular diabetology*. 2012;11:99.

493 **49.** Asahara T, Murohara T, Sullivan A, Silver M Rien van der Zee, Li T, Witzenbichler B,
494 Schatteman G, Isner J-M. Isolation of putative progenitor endothelial cells for angiogenesis. *Science*.
495 1997;275(5302):964-966.

496 **50.** Chen Y-H, Lin S-J, Lin F-Y, Wu T-C, Tsao C-R, Huang P-H, Liu P-L, Chen Y-L, Chen J-W.
497 High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not
498 oxidative stress-mediated mechanisms. *Diabetes*. 2007;56(6):1559-1568.

499 **51.** Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher A M,
500 Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor
501 cells. *Nature medicine*. 2003;9(11):1370-1376.

502 **52.** Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD, Lau J,
503 Eknoyan G. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation,
504 classification, and stratification. *Annals of internal medicine*. 2003;139(2):137-147.

505 **53.** Maya ID, Oser R, Saddekni S, Barker J, Allon M. Vascular access stenosis: comparison of
506 arteriovenous grafts and fistulas. *American journal of kidney diseases*. 2004;44(5):859-865.

507 **54.** Feldman HI, Kobrin S, Wasserstein A. Hemodialysis vascular access morbidity. *Journal of
508 the American Society of Nephrology*. 1996;7(4):523-535.

509 **55.** Lin CC, Chang CF, Lai MY, Chen TW, Lee PC, Yang WC. Far-infrared therapy: a novel
510 treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis
511 patients. *Journal of the American Society of Nephrology : JASN*. Mar 2007;18(3):985-992.

512 **56.** Lin C-C, Chang C-F, Chiou H-J, Sun Y-C, Chiang S-S, Lin M-W, Lee P-C, Yang W-C.
513 Variable pump flow-based Doppler ultrasound method: a novel approach to the measurement of access
514 flow in hemodialysis patients. *Journal of the American Society of Nephrology*. 2005;16(1):229-236.

515 **57.** Kipshidze N, Nikolaychik V, Muckerheidi M, Keelan MH, Chekanov V, Maternowski M,
516 Chawla P, Hernandez I, Iyer S, Dangas G, Sahota H, Leon MB, Roubin G, Moses JW. Effect of short
517 pulsed nonablative infrared laser irradiation on vascular cells in vitro and neointimal hyperplasia in a
518 rabbit balloon injury model. *Circulation*. 2001;104(15):1850-1855.

519 **58.** Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a
520 cellular and molecular viewpoint. *Journal of the American Society of Nephrology*.
521 2006;17(4):1112-1127.

522 **59.** Lai CC, Fang HC, Mar GY, Liou JC, Tseng CJ, Liu CP. Post-angioplasty far infrared
523 radiation therapy improves 1-year angioplasty-free hemodialysis access patency of recurrent obstructive

524 lesions. *European journal of vascular and endovascular surgery : the official journal of the European*
525 *Society for Vascular Surgery*. Dec 2013;46(6):726-732.

526 60. Dember LM, Beck GJ, Allon M, Delmez JA, Dixon BS, Greenberg A, Himmelfarb H,
527 Vazquez MA, Gassman JJ, Greene T, Radeva MK, Braden GL, Ikizler TA, Rocco MV, Davidson IJ,
528 Kaufman JS, Meyers CM, Kusek JW, Feldman HI. Effect of clopidogrel on early failure of arteriovenous
529 fistulas for hemodialysis: a randomized controlled trial. *Jama*. 2008;299(18):2164-2171.

530 61. Lin C-C, Yang W-C, Chen M-C, Liu W-S, Yang C-Y, Lee P-C. Effect of far Infrared therapy
531 on arteriovenous fistula maturation: An open-label randomized controlled trial. *American journal of*
532 *kidney diseases*. 2013;62(2):304-311.

533 62. Lewis SL, Dirksen SR, Heitkemper MM, Bucher L. *Medical-Surgical Nursing: Assessment*
534 *and Management of Clinical Problems, Single Volume*: Elsevier Health Sciences; 2013.

535 63. Lin CC, Liu XM, Peyton K, Wang H, Yang WC, Lin SJ, Durante W. Far infrared therapy
536 inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. *Arteriosclerosis,*
537 *thrombosis, and vascular biology*. Apr 2008;28(4):739-745.

538 64. Choi A, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel
539 stress-inducible protein in oxidant-induced lung injury. *American Journal of Respiratory Cell and*
540 *Molecular Biology*. 1996;15(1):9-19.

541 65. Stocker R, Glazer AN, Ames BN. Antioxidant activity of albumin-bound bilirubin.
542 *Proceedings of the National Academy of Sciences*. 1987;84(16):5918-5922.

543 66. Morita T, Perrella MA, Lee M-E, Kourembanas S. Smooth muscle cell-derived carbon
544 monoxide is a regulator of vascular cGMP. *Proceedings of the National Academy of Sciences*.
545 1995;92(5):1475-1479.

546 67. Tu Y-P, Chuang S-J, Chen S-C, Liu Y-H, Chen C-F, Hour T-C. Simvastatin induces the
547 expression of hemeoxygenase-1 against ischemia-reperfusion injury on the testes in rats. *Toxicology*
548 *letters*. 2011;207(3):242-250.

549 68. Tu YP, Chen SC, Liu YH, Chen CF, Hour TC. Postconditioning with far-infrared irradiation
550 increases heme oxygenase-1 expression and protects against ischemia/reperfusion injury in rat testis. *Life*
551 *sciences*. Jan 17 2013;92(1):35-41.

552 69. Tei C, Shinsato T, Miyata M, Kihara T, Hamasaki S. Waon therapy improves peripheral
553 arterial disease. *Journal of the American College of Cardiology*. 2007;50(22):2169-2171.

554 70. Cooke JP, Losordo DW. Nitric oxide and angiogenesis. *Circulation*.
555 2002;105(18):2133-2135.

556 71. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R. Nitric
557 oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast
558 growth factor-induced angiogenesis. *Journal of Clinical Investigation*. 1997;99(11):2625.

559 72. Hsu YH, Chen YC, Chen TH, Sue YM, Cheng TH, Chen JR, Chen CH. Far-infrared therapy
560 induces the nuclear translocation of PLZF which inhibits VEGF-induced proliferation in human
561 umbilical vein endothelial cells. *PloS one*. 2012;7(1):e30674.

562 73. Hwang S, Lee D-H, Lee I-K, Park YM, Jo I. Far-infrared radiation inhibits proliferation,
563 migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin
564 levels. *Cancer letters*. 2014;346(1):74-83.

565 **74.** Balabanov R, Washington R, Wagnerova J, Dore-Duffy P. CNS microvascular pericytes
566 express macrophage-like function, cell surface integrin α M, and macrophage marker ED-2.
567 *Microvascular research*. 1996;52(2):127-142.

568 **75.** Díaz-Flores L, Gutiérrez R, Varela H. Angiogenesis: an update. 1994.

569 **76.** Hayashi T, Noshita N, Sugawara T, Chan PH. Temporal profile of angiogenesis and
570 expression of related genes in the brain after ischemia. *Journal of Cerebral Blood Flow & Metabolism*.
571 2003;23(2):166-180.

572 **77.** Kokovay E, Li L, Cunningham LA. Angiogenic recruitment of pericytes from bone marrow
573 after stroke. *Journal of Cerebral Blood Flow & Metabolism*. 2006;26(4):545-555.

574 **78.** Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM,
575 Buchan AM, Lauriten M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and
576 disease. *Nature*. 2014.

577 **79.** Masuda A, Koga Y, Hattanmaru M, Minagoe S, Tei C. The effects of repeated thermal
578 therapy for patients with chronic pain. *Psychotherapy and psychosomatics*. 2005;74(5):288-294.

579 **80.** Masuda A, Kihara T, Fukudome T, Shinsato T, Minagoe S, Tei C. The effects of repeated
580 thermal therapy for two patients with chronic fatigue syndrome. *Journal of psychosomatic research*.
581 2005;58(4):383-387.

582 **81.** Matsushita K, Masuda A, Tei C. Efficacy of Waon therapy for fibromyalgia. *Intern Med*.
583 2008;47(16):1473-1476.

584 **82.** Matsumoto S, Shimodozono M, Etoh S, Miyata R, Kawahira K. Effects of thermal therapy
585 combining sauna therapy and underwater exercise in patients with fibromyalgia. *Complementary
586 therapies in clinical practice*. Aug 2011;17(3):162-166.

587 **83.** Hausswirth C, Louis J, Bieuzen F, Pournot H, Fournier J, Filliard J-R, Brisswalter J. Effects
588 of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced
589 muscle damage in highly-trained runners. *PLoS one*. 2011;6(12):e27749.

590 **84.** Huang CY, Yang RS, Kuo TS, Hsu KH. Phantom limb pain treated by far infrared ray.
591 *Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and
592 Biology Society. IEEE Engineering in Medicine and Biology Society. Conference*. 2009;2009:1589-1591.

593 **85.** Chang Y, Liu YP, Liu CF. The Effect on Serotonin and MDA Levels in Depressed Patients
594 with Insomnia when Far-Infrared Rays are Applied to Acupoints. *Am J Chinese Med*.
595 2009;37(5):837-842.

596 **86.** Chiang C, Romero L. Cutaneous lymphoid hyperplasia (pseudolymphoma) in a tattoo after
597 far infrared light. *Dermatologic surgery : official publication for American Society for Dermatologic
598 Surgery [et al.]*. Sep 2009;35(9):1434-1438.

599 **87.** Vatansever F, Hamblin MR. Far infrared radiation (FIR): Its biological effects and medical
600 applications. *Photonics and Lasers in Medicine*. 2012;1(4):255-266.

601 **88.** Inoué S, Kabaya M. Biological activities caused by far-infrared radiation. *International
602 journal of biometeorology*. 1989;33(3):145-150.

603 **89.** Chou K-S, Lu Y-C. The application of nanosized silver colloids in far infrared low-emissive
604 coating. *Thin Solid Films*. 2007;515(18):7217-7221.

605 **90.** Porkert M, Sher S, Reddy U, Cheema F, Niessner C, Kolm P, Jones DP, Hooper C, Taylor
606 WR, Harrison D, Quyyumi AA. Tetrahydrobiopterin: a novel antihypertensive therapy. *Journal of*
607 *human hypertension.* 2008;22(6):401-407.

608 **91.** Antoniades C, Shirodaria C, Crabtree M, Rinze R, Alp N, Cunningham C, Diesch J, Tousoulis
609 D, Stefanadis C, Lesson P, Ratnatunga C, Pilli R, Channon KM. Altered plasma versus vascular
610 biopterins in human atherosclerosis reveal relationships between endothelial nitric oxide synthase
611 coupling, endothelial function, and inflammation. *Circulation.* 2007;116(24):2851-2859.

612 **92.** Pall ML. Do sauna therapy and exercise act by raising the availability of tetrahydrobiopterin?
613 *Medical hypotheses.* 2009;73(4):610-613.

614 **93.** Audhya T, Pall ML, Green JA. A Study of Sauna Therapy in Myalgic
615 Encephalomyelitis/Chronic Fatigue Syndrome Patients Shows Sauna Action via Raised
616 Tetrahydrobiopterin and Confirms Three Predictions of the NO/ONOO-Cycle. *Townsend Letter.*
617 2013;364:60-64.

618 **94.** Hauck EF, Apostel S, Hoffmann JF, Heimann A, Kempski O. Capillary flow and diameter
619 changes during reperfusion after global cerebral ischemia studied by intravital video microscopy.
620 *Journal of Cerebral Blood Flow & Metabolism.* 2004;24(4):383-391.

621 **95.** Leffler CW, Beasley DG, Busija DW. Cerebral ischemia alters cerebral microvascular
622 reactivity in newborn pigs. *American Journal of Physiology-Heart and Circulatory Physiology.*
623 1989;257(1):H266-H271.

624 **96.** Baird A, Donnan G, Austin M, Fitt G, Davis S, McKay W. Reperfusion after thrombolytic
625 therapy in ischemic stroke measured by single-photon emission computed tomography. *Stroke.*
626 1994;25(1):79-85.

627 **97.** Leung T-K, Lee C-M, Lin M-Y, Ho Y-S, Chen C-S, Wu C-H, Lin Y-S. Far infrared ray
628 irradiation induces intracellular generation of nitric oxide in breast cancer cells. *Journal of Medical and*
629 *Biological Engineering.* 2009;29(1):15-18.

630 **98.** Ayers NA, Kapás L, Krueger JM. Circadian variation of nitric oxide synthase activity and
631 cytosolic protein levels in rat brain. *Brain research.* 1996;707(1):127-130.

632 **99.** Starkey SJ. Melatonin and 5-hydroxytryptamine phase-advance the rat circadian clock by
633 activation of nitric oxide synthesis. *Neuroscience letters.* 1996;211(3):199-202.

634 **100.** Cheng H-YM, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T,
635 Shimizu K, Okamura H, Impey S, Obrietan K. microRNA modulation of circadian-clock period and
636 entrainment. *Neuron.* 2007;54(5):813-829.

637 **101.** Na Y-J, Sung JH, Lee SC, Lee YJ, Choi YJ, Park WY, Shin HS, Kim JH. Comprehensive
638 analysis of microRNA-mRNA co-expression in circadian rhythm. *Experimental & molecular medicine.*
639 2009;41(9):638-647.

640 **102.** Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepää AL,
641 Oresic M, Esau CC, Zdobnov EM, Schibler U. Integration of microRNA miR-122 in hepatic circadian
642 gene expression. *Genes & development.* 2009;23(11):1313-1326.

643 **103.** Quyyumi AA. Circadian rhythms in cardiovascular disease. *American heart journal.*
644 1990;120(3):726-733.

645 **104.** Shaw E, Tofler GH. Circadian rhythm and cardiovascular disease. *Current atherosclerosis*
646 *reports.* 2009;11(4):289-295.

647

648

649 Table and Figure Legends

650 **Table Legend**

651 FIR, far infrared; CVD, cardiovascular disease; FMD, flow-mediated endothelium-dependent dilation;

652 CHF, chronic heart failure; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; 6MWD,

653 6-minute walk distance; DM, diabetes mellitus; EPC, endothelial progenitor cell; ESRD, end-stage renal disease;

654 Qa, access flow; AVF, arteriovenous fistula; CKD, chronic kidney disease; AVG, arteriovenous graft;

655 PTA, percutaneous transluminal angioplasty; PAD, peripheral arterial disease; HO-1, heme oxygenase-1.

656

657

658 **Figure Legend**

659 Effects of far-infrared therapy. Far-infrared (FIR) rays enable multiple energy transfer as deep as 2 to 3 cm into

660 subcutaneous tissue without irritating or overheating the skin and then accelerate blood flow, leading to an

661 increase in shear stress, followed by an increase in endothelial nitric oxide synthase activity and nitric oxide

662 production. Moreover, FIR or shear stress can regulate the expression of some circulating miRNAs in

663 endothelial cells. Consequently, FIR therapy improves the symptoms of chronic diseases (e.g., cardiovascular

664 disease, diabetes mellitus, and chronic kidney disease).

665

666

667